
Generic 128-bit Math API

Marta A Plantykow
Synopsys

Gdańsk, Poland
pmarta@synopsys.com

Milena Olech
Intel Technology Poland

Gdańsk, Poland
milena.olech@intel.com

Alex Lobakin
Intel Technology Poland

Gdańsk, Poland
alexandr.lobakin@intel.com

Abstract

This technology exists for other purposes despite the
need to implement a 128-bit processor. In this work we
propose a generic 128-bit math API for the Linux kernel.
Created API allows operating on 128-bit values using
simple math operations in case of an addition, subtrac-
tion, and comparison, and more complex algorithms for
division and multiplication.
Performance was tested on two functions that operate
on more than 64-bit values. Tests proved that the devel-
oped API could deliver better results than the original
functions, reducing the operation time.
The solution can be immediately used in Precision
Time Protocol (PTP) implementation, in which pre-
cise calculations are crucial due to the rigorous phase-
synchronization of telco requirements.
The proposed implementation is ready to be used for
other purposes, such as Streaming SIMD 1 Extensions
(SSE), in graphic accelerators or cryptography algo-
rithms.

Introduction
As of 2022, no 128-bit computers are available on the
market. (Groa) Moreover, such processors may never
become available since there is no practical reason. 64-
bit computers were introduced to solve the problems
of Random Access Memory (RAM). 64-bit register can
potentially manage up to 264 bytes of RAM, 16 exabytes.
(Groa) Nowadays, advanced servers designed for the most
demanding applications support up to 6 TB of RAM
(786GB). (RAM)

Even though there is no need to implement 128-bit
operations, this technology exists for other purposes, such
as hardware performance accelerators, graphic accelera-
tors, or cryptography. Moreover, 128-bit-based variables
allow performing calculations on large values with greater
accuracy without the need for estimates.

In this work, we propose a generic 128b Math API
for the Linux kernel ready to be used in Precision Time
Protocol (PTP) implementation.

The paper is divided into three main sections.
1Single instruction, multiple data (SIMD) - the simplest

method of parallelism (PA04)

The Related work section describes 128-bit applica-
tions, focusing on Precision Time Protocol implementa-
tion in Linux kernel and mathematical theorem.

The following section describes Introduced changes and
the analysis of their influence on PTP performance.

The third section describes Conclusions.
Finally, the last section describes the Future Work.

Related work
Precision Time Protocol
IEEE Standard 1588 defines a Precision Clock Synchro-
nization Protocol for Networked Measurement and Con-
trol Systems. It supports system-wide synchronization in
the sub-microsecond range putting minimal requirements
on network and local computing resources. The clocks
within a system are organized into a leader-follower hier-
archy. The clock at the top of the hierarchy determines
the reference time for the entire system.

The standard provides administration-free operation
and allows simple systems to be installed and operated
without administrative attention. The protocol applies
to both high-end and low-end devices. It operates by
exchanging messages between the leader and the follower.
(Gro20)

Streaming SIMD Extensions
Streaming SIMD Extensions (SSE) are a set of registers
and instructions added to Intel Central Processing Units
(CPU) to improve multimedia performance, such as video
encoding and decoding. SSE works with all standard
data types, including integers up to 128 bits. (Groc)

Graphic Accelerators
A graphics card is an integrated circuit that generates
the video signal sent to a computer display. It contains
a graphics processing unit (GPU), a digital-to-analog
converter, and memory chips that store display data.
(Bri) In some implementations, it has a pathway 128 bits
wide between its onboard processor and memory. (Grob)

Cryptography
The Advanced Encryption Standard (AES) specifies a
Federal Information Processing Standards (FIPS) ap-
proved cryptography algorithm used to protect electronic

data, encrypting and decryption information. The AES
algorithm can use cryptography keys of 128, 192, and 256
bits to encrypt and decrypt data in blocks of 128 bits.
(Dwo01)

Mathematical background
When the processor performs a system that supports
128-bit-based native operations, all mathematics and no
manual implementation are needed. However, not every
architecture does so. That is when fallback functions
come to the rescue. Moreover, most of those architectures
are 32-bit based, so it is crucial to implement fallback
functions using 32-bit based mathematics. (kc)

The following subsections describe the theoretical back-
ground of 128-bit-based multiplication and division al-
gorithms. Comparison, addition, and subtraction of two
128-bit values are basic mathematical operations that do
not require complex algorithms. (Knu98)

In the case of multiplication and division, the following
notation has been used:

(...a3a2a1a0a−1a−2...)b = (1)

...+ a3b
3 + a2b

2 + a1b
1 + a0 + a−1b

−1 + a−2b
−2 + ...

The easiest generalizations of the decimal number sys-
tem are received when we take b to be an integer greater
than one and when a′s are required to be integers in the
range of 0 ≤ ak < b. This gives the standard binary
(b = 2), ternary (b = 3), quaternary (b = 4) number
systems.

Multiplication algorithm (Knu98)
Given nonnegative integers (um−1...u1u0)b and
(vn−1...v1v0)b, this algorithm forms their radix-b product
(wm+n−1...w1w0)b.
1. Initialize

Set wm−1, wm−2, ..., w0 all to 0. Set j = 0

2. Zero multiplier?
If vj = 0, set wj+m = 0 and go to step 6.

3. Initialize i
Set i = 0, k = 0

4. Multiply and add
Set t = ui × vj + wi+j + k; then set wj+k = t mod b
and k = ⌊ t

b⌋
5. Loop on i

Increase i by one. Now, if i < m, go back to step 4;
otherwise, set wj+m = k

6. Loop on j
Increase j by one. Now, if j < n, go back to step 2; ,
the algorithm terminates.

Division algorithm (Knu98)
Given nonnegative integers u = (um+n−1...u1u0)b and
v = (vn−1...v1v0)b, where vn−1 ̸= 0 and n > 0, we
form the radix-b quotient ⌊u

v ⌋ = (qmqm−1...q0)b and the
remainder u mod v = (rn−1...r1r0)b.
1. Normalize

Set d = ⌊ b−1
vn−1

⌋. Then set (um+num+n−1...u1u0)b

equal to (um+n−1...u1u0)b times d. Similarly, set
(vn−1...v1v0)b equal to (vn−1...v1v0)b times d.

2. Initialize j
Set j = m.

3. Calculate q̂

Set q̂ = ⌊ (uj+nb+uj+n−1)
vn−1 ⌋ and let r̂ be the remainder

(uj+nb + uj+n−1) mod vn−1. Not test if q̂ = b or
q̂vn−2 > br̂ + uj+n−2. If so, decrease q̂ by 1, increase
r̂ by vn−1, and repeat this test if r̂ < b.

4. Multiply and subtract
Replace (uj+nuj+n−1...uj)b by

(uj+nuj+n−1...uj)b − q̂(vn−1...v1v0)b (2)

This computation consists of a simple multiplication by
a one-place number combined with a subtraction. The
digits (uj+n, uj+n−1, ..., uj) should be kept positive. If
the result of this step is negative, (un+juj+n−1...uj)b
should be left as the actual value plus bn+1, namely as
the b′s complement of the actual value, and borrow to
the left should be remembered.

5. Test remainder
Set qj = q̂. If the result of step 4 was negative, go to
step 6. Otherwise, go on to step 7.

6. Add back
Decrease qj by 1, and add (vn−1...v1v0)b to
(un+juj+n−1...uj+1uj)b

7. Loop on j
Decrease j by one. Now if j ≥ 0, go back to 3.

8. Unnormalize
Now (qm...q1q0)b is the desired quotient, and the
desired remainder may be obtained by dividing
(un−1...u1u0)b by d.

Introduced changes
The proposed API defines a structure that represents un-
signed 128bit-based variables along with load and store
operations. It supports 32-bit and 64-bit-based architec-
tures and use __int128 when supported by the platform
(x86_64, ARM64, etc.). (kc)

1 typede f union {
2 #i f d e f __BIG_ENDIAN
3 s t r u c t {
4 u32 b127_96 ;
5 u32 b95_64 ;
6 u32 b63_32 ;
7 u32 b31_0 ;
8 } ;
9 s t r u c t {

10 u64 b127_64 ;
11 u64 b63_0 ;
12 } ;
13 #e l s e /∗ __LITTLE_ENDIAN ∗/
14 s t r u c t {
15 u32 b31_0 ;
16 u32 b63_32 ;
17 u32 b95_64 ;
18 u32 b127_96 ;

19 } ;
20 s t r u c t {
21 u64 b63_0 ;
22 u64 b127_64 ;
23 } ;
24 #end i f /∗ __LITTLE_ENDIAN ∗/
25 #i f d e f __HAVE_INT128
26 unsigned __int128 b127_0 ;
27 #end i f /∗ __HAVE_INT128 ∗/
28 } __u128 ;

• u128_store

1 s t a t i c i n l i n e __u128 u128_store (u64 high ,
u64 low)

2 {
3 __u128 va l = {
4 . b127_64 = high ,
5 . b63_0 = low ,
6 } ;
7

8 re turn va l ;
9 }

• u128_load

1 s t a t i c i n l i n e u64 u128_load_high (__u128
va l)

2 {
3 re turn va l . b127_64 ;
4 }
5 s t a t i c i n l i n e u64 u128_load_low (__u128 va l

)
6 {
7 re turn va l . b63_0 ;
8 }

A set of routines are defined:
• Comparison

– u128_et checks if unsigned 128bit is equal to un-
signed 128bit

– u128_gt checks if unsigned 128bit is greater than
unsigned 128bit

– u128_get checks if unsigned 128bit is greater or
equal to unsigned 128bit

– u128_lt checks if unsigned 128bit is less than un-
signed 128bit

– u128_let checks if unsigned 128bit is less or equal
to unsigned 128bit

• Addition
– add_u128_u64 adds unsigned 64bit val to unsigned

128b val
– add_u128_u128 adds unsigned 128bit val to un-

signed 128b val
• Subtraction

– sub_u128_u64 subtracts unsigned 64bit val from
unsigned 128b val

– sub_u128_u128 subtracts unsigned 128bit val from
unsigned 128b val

• Multiplication
– mul_u128_u64_shr unsigned 128bit multiplied by

64bit multiplier and shift right
– mul_u128_u32_shr unsigned 128bit multiplied by

32bit multiplier and shift right
– mul_u128_u128_shr unsigned 128bit multiplied

with 128bit multiplier and shift right
– mul_u128_u32 unsigned 128bit multiplied with

32bit multiplier
– mul_u128_u32_shr_fb unsigned 128bit multi-

plied with 32bit multiplier and shift right
– mul_half_u128_u64 unsigned 128bit multiplied

with 64bit multiplier
– mul_u128_u64 unsigned 128bit multiplied with

64bit multiplier
– mul_u128_u64_shr_fb unsigned 128bit multi-

plied with 64bit multiplier and shift right
– mul_u128_u128 unsigned 128bit multiplied with

128bit multiplier
• Division

– div_u128_u32_rem unsigned 128bit division with
32bit divisor where a pointer to unsigned 128bit
remainder is returned

– div_u128_u32 unsigned 128bit division with 32bit
divisor

– div_u128_u64_rem unsigned 128bit division with
64bit divisor where a pointer to unsigned 128bit
remainder is returned

– div_u128_u64 unsigned 128bit division with 64bit
divisor

– div_u128_u128 unsigned 128bit division with
128bit divisor

– div_u96_u96 unsigned 96bit division with 96bit
divisor

– div_u128_u96 unsigned 128bit division with 96bit
divisor

– div_u128_rem unsigned 128bit division with 128bit
divisor where a pointer to unsigned 128bit remainder
is returned

– div_u128 unsigned 128bit division with 128bit divi-
sor

Furthermore, a set of relevant kunit2 tests is defined.
Implemented tests can either run on kernel boot if built-
in, or load as a module. KUnit follows the white-box
testing approach. (doc) In such a scenario inputs for
each of the functions are upfront defined in the tests
along with expected outputs.

Methodology
Tests were performed to measure the efficiency of the
introduced API.

2Kernel unit testing framework (KUnit) - provides a com-
mon framework for unit tests within Linux kernel. (doc)

As the first step, a function that operates on more than
64-bit values was chosen: ice_ptp_adjfine from the Intel
ice driver of the 5.19.5 Linux kernel, later referred to as
algorithm1. As a second, the same function was taken
from the 6.0 Release Candidate kernel and the same tests
were executed, referred as algorithm2. Finally, fallback
implementations were compared against the native 128-
bit ones, referred as algorithm3. The function is directly
related to the Precision Time Protocol.

The test was divided into two parts - In the first part
an operation was repeated 100 times and in the second
part an operation was repeated 10000 times. Before and
after each operation a timestamp was taken. Based on
a time difference, expressed in nanoseconds, operation
time was calculated. Measurements were taken with and
without new API usage to determine the efficiency of
the introduced API. Each test was repeated ten times to
provide stability and predictability. It is important to
mention that to reduce the possible noise interrupts were
disabled while testing. Average values were calculated
and compared. Outcome is presented in section Results.

Results
Table 1 and Table 2 show the results of performing algo-
rithm 1 with and without 128bit usage for 100 and 10000
iterations respectively. Similarly, Table 3 and Table 4
show results of performing algorithm 2 with and without
128bit usage for 100 and 10000 iterations respectively,
while Table 5 and 6 do that for the algorithm 3.

Table 1: Algorithm 1 - 100 iterations

With 128 Without 128
Time[ns] 30986 36288

30567 37174
39572 35983
30501 35531
29645 37225
30579 36753
30662 36917
30874 35918
31076 36818
30917 36694

Average[ns] 30537,9 36529,1
Difference 5991,2

Table 2: Algorithm 1 - 10000 iterations

With 128 Without 128
Time[ns] 2910762 3479241

2889556 3458588
2898945 3456600
2885530 3464868
2885966 3456716
2884493 3466790
2888336 3468363
2904135 3493585
2886087 3457316
2884718 3462869

Average[ns] 2891852,8 3466413,6
Difference 574560,8

Table 3: Algorithm 2 - 100 iterations

With 128 Without 128
Time[ns] 30986 30558

30567 29817
39572 29763
30501 30862
29645 30766
30579 30920
30662 31740
30874 31549
31076 31715
30917 30536

Average[ns] 30537,9 30822,6
Difference 284,7

In all tested cases, the developed API deliver better
results. Although the major purpose of the API intro-
duction was not to improve the performance, but to
introduce generic API, this change did not negatively
affect performance. Furthermore, operation time was
reduced by up to 547,5 µs per 10,000 operations.

Conclusions
The developed solution provides an easy-to-use kernel
API to support 128-bit operations. It may become a
key feature considering the rapid development of Telco
requirements. Created API allows operating on 128bit
values using simple math operations in case of an ad-
dition, subtraction, and comparison and more complex
algorithms for division and multiplication. Tests proved
that introduced changes do not negatively influence ana-
lyzed functions’ performance. Moreover, besides better
performance, this change also improved the precision of
calculations due to denomination elimination.

Table 4: Algorithm 2 - 10000 iterations

With 128 Without 128
Time[ns] 2910762 2884022

2889556 2886298
2898945 2905804
2885530 2884171
2885966 2900811
2884493 2905661
2888336 2897499
2904135 2887431
2886087 2910105
2884718 2885615

Average[ns] 2891852,8 2894741,7
Difference 2888,9

Table 5: Algorithm 3 - 100 iterations

Native ops Fallbacks
Time[ns] 30899 31509

30532 29725
30868 31896
29578 31614
30977 30931
30681 31835
29598 30471
29701 31797
31078 29881
29634 31805

Average[ns] 30354,6 31146,4
Difference 791,8

Future Work
Proposed API proves to be an effective method to per-
form 128-bit math calculations, so in the nearest future,
the code will be submitted to the Linux kernel Mailing
Lists. Later works may include treewide conversions and
switching more drivers and subsystems (crypto etc.) to
this solution.

Table 6: Algorithm 3 - 10000 iterations

Native ops Fallbacks
Time[ns] 2893146 2910706

2894902 2882109
2903383 2906288
2891043 2899066
2890052 2908561
2885330 2900073
2888230 2886179
2884972 2887796
2905913 2887784
2888076 2891369

Average[ns] 2892504,7 2895993,1
Difference 3488,4

References
[Bri] Encyclopedia Brittanica. Video card. https://www.
britannica.com/technology/video-card. Accessed:
2022-8-29.

[doc] docs.kernel.org. Kunit - linux kernel unit test-
ing. https://docs.kernel.org/dev-tools/kunit/
index.html. Accessed: 2022-9-6.

[Dwo01] M.et all Dworkin. Advanced encryption standard
(aes). Federal Inf. Process. Stds. (NIST FIPS), National
Institute of Standards and Technology, Gaithersburg, MD,
[online], 2001.

[Groa] PCMag Digital Group. 128-bit comput-
ing. https://www.pcmag.com/encyclopedia/term/
128-bit-computing. Accessed: 2022-8-29.

[Grob] PCMag Digital Group. 128-bit graphics accel-
erator. https://www.pcmag.com/encyclopedia/term/
128-bit-graphics-accelerator. Accessed: 2022-8-29.

[Groc] PCMag Digital Group. Definition of sse. https:
//www.pcmag.com/encyclopedia/term/sse. Accessed:
2022-8-29.

[Gro20] Working Group PNCS Precise Networked Clock
Synchronization Working Group. Ieee standard for a
precision clock synchronization protocol for networked
measurement and control systems. IEEE Std 1588-2019
(Revision of IEEE Std 1588-2008), pages 1–499, 2020.

[kc] The Linux kernel community. Elixir: con-
fig_arch_supports_int128. https://elixir.bootlin.
com/linux/v6.0-rc4/source/include/linux/math64.
h#L157. Accessed: 2022-9-6.

[Knu98] Donald E. Knuth. The art of computer program-
ming. Stanford University, 1998.

[PA04] Wesley Petersen and Peter Arbenz. 85SIMD, Sin-
gle Instruction Multiple Data. In Introduction to Parallel
Computing: A practical guide with examples in C. Oxford
University Press, 01 2004.

[RAM] Intel® xeon® platinum 8351n
processor. https://ark.intel.com/
content/www/us/en/ark/products/212288/
intel-xeon-platinum-8351n-processor-54m-cache-2-40-ghz.
html. Accessed: 2022-9-6.

https://www.britannica.com/technology/video-card
https://www.britannica.com/technology/video-card
https://docs.kernel.org/dev-tools/kunit/index.html
https://docs.kernel.org/dev-tools/kunit/index.html
https://www.pcmag.com/encyclopedia/term/128-bit-computing
https://www.pcmag.com/encyclopedia/term/128-bit-computing
https://www.pcmag.com/encyclopedia/term/128-bit-graphics-accelerator
https://www.pcmag.com/encyclopedia/term/128-bit-graphics-accelerator
https://www.pcmag.com/encyclopedia/term/sse
https://www.pcmag.com/encyclopedia/term/sse
https://elixir.bootlin.com/linux/v6.0-rc4/source/include/linux/math64.h#L157
https://elixir.bootlin.com/linux/v6.0-rc4/source/include/linux/math64.h#L157
https://elixir.bootlin.com/linux/v6.0-rc4/source/include/linux/math64.h#L157
https://ark.intel.com/content/www/us/en/ark/products/212288/intel-xeon-platinum-8351n-processor-54m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212288/intel-xeon-platinum-8351n-processor-54m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212288/intel-xeon-platinum-8351n-processor-54m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212288/intel-xeon-platinum-8351n-processor-54m-cache-2-40-ghz.html

	Introduction
	Related work
	Precision Time Protocol
	Streaming SIMD Extensions
	Graphic Accelerators
	Cryptography
	Mathematical background

	Introduced changes
	Methodology
	Results

	Conclusions
	Future Work

